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ABSTRACT

The so-called True Skill Statistic (TSS) and the Heidke Skill Score (S), as used in the context of the contingency

table approach to forecast verification, are compared. It is shown that the TSS approaches the Probability of

Detection (POD) whenever the forecasting is dominated by correct forecasts of non-occurrence, i.e., forecasting
rare events like severe local storms. This means that the TSS is vulnerable to “hedging” in rare event forecasting.
The S-statistic is shown to be superior to the TSS in this situation, accounting for correct forecasts of null events
in a controlled fashion. It turns out that the TSS and S values are related in a subtie way, becoming identical
when the expected values (due to chance in a k X k contingency table) remain unchanged when comparing
the actual forecast table to that of a hypothetical perfect set of forecasts. Examples of the behavior of the TSS
and S values iri different situations are provided which support the recommendation that S be used in preference
to TSS for rare event forecasting. A geometrical interpretation is also given for certain aspects of the 2 X 2
contingency table and this is generalized to the k X / case. Using this geometrical interpretation, it is shown to
be possible to apply dichotomous verification techniques in polychotomous situations, thus allowing a direct

- comparison between dichotomous and polychotomous forecasting.

1. Introduction

In a recent paper, Doswell and Flueck ( 1989, here-
after referred to as DF89) described the use of the con-
tingency table for forecasting verification. Some sum-
- mary measures of verification skill were mentioned and
applied to a forecasting experiment, including the so-
called True Skill Statistic (TSS).? The TSS (under any
of its myriad names) is used widely in statistics and is
recommended by Murphy and Daan (1985) as a
“proper formulation of a skill score.” Skill scores in
general measure relative forecasting skill, comparing
the forecasts in question to some standard forecasting
technique. The idea is to avoid artificial inflation (or
deflation) of one’s perception of the quality of the fore-
casts. Some examples of standard forecasts include
random guessing, climatology, and persistence. Every-
one in operational forecasting understands, for in-
stance, that the percentage of correct forecasts is really
not a very meaningful statistic, unless it is substantially
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2 The TSS is also known as the Hanssen-Kuipers (H-K ) Discrim-
inant (see, e.g., Woodcock 1976). Murphy and Daan (1985) refer
to it as Kuipers’ Performance Index. This proliferation of names for
the same score is relatively common and can cause considerable con-
fusion. Confusing terminology is confounded further by the lack of
standardized notation.
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different from what one might obtain using, say, per-
sistence. The TSS compares the number of correct
forecasts, minus those attributable to random gL]’lessmg
(subject to the constraint that the marginal totals of
observed events in the contingency table must remain
the same), to that of a hypothetical set of perfect fore-
casts. We will show this in more detail in what fc'>llows.

In this paper, we wish to examine several asp ects of
verification using contingency ‘tables, mcludmg the
TSS, in situations where one might anticipate that one
of the elements of the contingency table dommates the
other elements. In particular, for forecasts of rare events
(like tornadoes or flash floods), one expects that ¢orrect
forecasts of non-occurrence will dominate a dontin-
gency table. This creates a variety of problems|i to be
discussed after we have established some basic deﬁm-
tions associated with the standard 2 X 2 contmgency
table (see DF89 and Donaldson et al. 1975) asso'c:ated
with dichotomous forecasts.

The contents of this paper are necessarily rathter ab-
stract and there is a chance that some field forecasters
are not familiar with these esoteric aspects of :veriﬁ-
cation scores. The failure of the TSS to deal effectively

~with rare event forecasts led to the analysis contained

in this paper. We did not set out to consider the at'>stract
properties of verification scores, but such conmdera-
tions were forced on us; we needed an alternative to
the TSS. While many operational forecasters may be
unaware of (and uninterested in) the subtleties of ver-
ification scores, we hope that this paper will convince
at least some of them that it is in their interests to
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TABLE 1. Schematic actual (left) and hypothetical “perfect” (right) forecast contingency tables, using the notation of Donaldson et al.
(1975). In the “perfect” table, the number of observed events in each category remains the same as in the actual table, as does N = x + y

+ z + w, the total number of events.

Observed Observed
Forecast Yes No Total Forecast Yes No Total
Yes X z X+ z Yes x+y 0 x+y
No y w y+w No 0 z+w z+w
Total x+y z+w N Total x+y z+w N

become concerned about these issues. As noted in
DF89, if forecasts are not verified, then one is not taking
those forecasts seriously. However, mere calculation of
numbers via some pre-existing verification scheme is
not a very thoughtful way to evaluate the quality of
those forecasts. It is all too easy to misuse or misapply
some statistical summary measure of forecast quality.
As suggested in DF89, if one is concerned with im-
proving forecasts, one first must distinguish good from
bad forecasting, and to be able to monitor the quality
of forecasting over time.

We will show that the TSS has some disadvantages
in situations involving forecasts of rare events. Further,
the extension of the TSS to the k X k contingency table
is rather complex and involves some complicated cal-
culation. We will show that the Heidke skill score (S)
discussed in Panofsky and Brier (1958; hereafter re-
ferred to as PB58) avoids these difficulties and seems
better suited as a summary measure of skill in fore-
casting than the TSS when evaluating forecasts of rare
events. The relationship between the TSS and the S-
statistic will be shown in some detail.

A geometrical interpretation of some aspects of the
verification of a 2 X 2 contingency table will be given,
and the results generalized to the k X [ case. This will
allow a direct comparison between dichotomous and
polychotomous verification results. We will use some
of the data from DF89 to illustrate the evaluation and
interpretation of S in comparison with the TSS, as well
as to demonstrate the applicability of the geometrical
interpretation of the verification statistics. Moreover,
we also will include some illustrative examples from a
forthcoming paper on verification of severe thunder-
storm and tornado watches that will serve to show the
performance of S in rare event forecasting.

2. Some basic definitions
a. Dichotomous forecasts

Table 1 defines the elements of the basic 2 X 2 con-
tingency table associated with dichotomous forecasts.
Donaldson et al. (1975) employed three of the four
elements of this table to define various forecast veri-
fication measures, leading to what they called the Crit-
ical Success Index [or CSI = x/(x + y + z)]. Note
that the CSI has been employed elsewhere (e.g., Ber-
mowitz and Zurndorfer 1979) under the name of the

Threat Score, and has been used widely in operational
forecast verification. A problem with this score is that
no account is taken of the contents of the table asso-
ciated with correct forecasts of null events. Clearly, in
forecasting rare events, this term (w) will be the dom-
inant one and the CSI ignores the potential problems
associated with a very large w by not employing it at all
(see Mason 1989). On the one hand, many of the cor-
rect forecasts of null events are trivial in character and
seemingly of little interest in the verification. Many
forecasters realize that at times, however, it takes a
great deal of effort to conclude correctly that nothing
will happen in a given situation and it seems unfair
that such an effort can have no positive influence on
the forecast evaluation. Schaefer (1990) has attempted
to modify the CSI to deal with this problem.

Before we turn to some alternatives for incorporating
the information contained in the w-element of the 2
X 2 table, let us consider the ways in which the data
in the table can be combined. As shown in Table 2,
there are eight ways in which ratios can be formed
involving one of the elements with its associated mar-
ginal sums. Donaldson et al. (1975) defined only two
of these, the Probability of Detection (POD) and the
False Alarm Ratio (FAR).? Flueck (1987) has noted
another, the Probability of False Detection (POFD).
For the sake of completeness, we wish to give names
to all eight of the possible combinations, and these are
presented in Table 2 also. We note the following re-
lationships which suggest we need only four* of the
eight (e.g., POD, FAR, DFR, and POFD) to describe
all the combinations.

|—FAR=222__2 _FOH, (la)
xX+z x4z
+
1—POFD=22Y__Z _poON, (Ib)
zZ+w z4+w
+ N
1—POD="22__X _FOM (ic)
x+y x+y

3 The POD is also referred to as prefigurance, while 1 — FAR is
sometimes called the post agreement in some references (see, €.g.,
Brier and Allen 1951).

“ Strictly, one needs only three of the combinations in the 2 X 2
case, because the fourth can be derived from the other three. However,
for the general k X [ situation, all four are necessary.
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TABLE 2. Definitions for ratios of Table | elements with
their associated marginal sums.
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X - —=_ - FoH = FAR —— = POFD
x+y x+z x+z z+w K

y y _ w
~——=FOM —— = DFR = PON —— = FOCN
x+y y+w z+w y+w

POD: Probability of Detection

FAR: False Alarm Ratio

FOM: Frequency of Misses

PON: Probability of a Null event

FOH: Frequency of Hits

POFD: Probability of False Detection

DFR: Detection Failure Ratio .

FOCN: Frequency of Correct Null forecasts

1—-DFR =2F¥_ Y __pocN. (1d)

y+w y+w

For this 2 X 2 case, the TSS can be shown to be (see
Appendix A)

(xw — yz)
TSS = POD - POFD = ——————, 2
S5 0 (x+y)z+w) (2)
while the Heidke skill score’ is
C—-F
S=N"E
2(xw — yz
( yz) 3)

=y2+zz+2xw+(y+'z)(x+w)’

where C is the number of correct forecasts (x + w), N
is the total number of forecasts (x + y + z + w) and
E is the expected number of correct forecasts due purely
to chance. The latter'is derived here from the marginal
sums to be '

(x+z)(x+y)+(z+w)(y+w)
x+y+z+w ’

E=

(4)

Some limiting cases relevant to S are noted in Table
3, and it can be seen that S shares certain desirable
properties with the TSS; e.g., S falls within a (—1, +1)
range so it looks rather like a measure of correlation.
It can be seen in (2) and (3) that the numerators (in
the 2 X 2 case) of the TSS and S are very similar,
differing only by a factor of two. However, the denom-
inators are quite different. We will show the relationship
between these two scores in what follows. For the mo-

ment, we observe that whenever y = z, the TSS and S '

are equal.

We wish to consider what happens to the TSS in the
case where the w-element becomes large, relative to
the other elements in the contingency table. By taking
the limiting case of (2), it is easy to show that

3 Apparently, the skill score defined by Panofsky and Brier (1958)
is due to Heidke (1926), as noted in Brier and Allen (1951). Hereafter,
this will be referred to as the Heidke skill score.
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lim TSS = —— = POD. (5)
xX+y

z{fw—0

To be absolutely rigorous, (5) is valid only if yz/xw
tends to zero as well. If z/w tends to zero, then yz/xw
will fail to tend toward zero only if x tends to zero as
well, in which case the POD is likely to decrease. When
w gets very large in comparison to the other elements
in the table (particularly, the z-element), one can
maximize the TSS simply by maximizing the POD.

On the other hand, when taking the sarne limits on
(3), we find the limiting case for S to be

2x

1. - — I
im S 2x+y+z

z/w—>0

-
2(CSI+ 1) | (6)
Therefore, in the limiting case, S tends to a simple
function of the CSI (see Fig. 1). '

As an ancillary issue, Donaldson et al. ( l975) intro-
duced a factor of « in their analysis of the CSI to ac,count
for situations in which either the POD or the FAR is
most important to the forecast. In some situatioris, one
might be willing to accept a large FAR for som¢ fore-
casts. Of course, a large FAR can lead to the “cry|wolf”
syndrome, which may be undesirable. The technique
involves replacing z in the forecast contingency table
(as in Table 1) with z/x. Some characteristics of this
modification to the CSI are noted in Table 3. |

b. Polychotomous forecasts \

In the situation where the forecasts and observations
fall into more than two categories, the TSS must be
generalized. It is convenient to define new notation for
a k X k contingency table as shown in Table 4. {Using
this notation, the expected value for the ijth table ele-
ment is given by E; = (n;)(n;)/n_ and this value can
be subtracted from the observed ijth element to give
that part of the observed elements which is due to skill

1.0

08 |- Pid
0.6 |- 7

0.4

SKILL SCORE

0.2

N I B 1 1 1 L1
0.2 04 0.6 0.8 v 10

CRITICAL SUCCESS INDEX }

FIG. 1. Plot of the Heidke Skill Score (S) as a function of the
Critical Success Index (CSI—solid line), in the limiting case [Eq.
(6)] of the ratio z/w tending to zero. The dashed line is included for
reference and show S = CSI.

0.0 L
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TABLE 3. Some limiting cases.

A. Heidke Skill Score

I. x =0, y = 0 (no observed events): S = 0

2. x =0, z = 0 (no events forecast): S = 0

3. x =0, w = 0 (no correct forecasts): S = —2zy/(y* + z2)
S attains its minimum when y = z(at S = —1)

4. y =0, z = 0 (no incorrect forecasts): S = 1

5. w— oo (rare events): S = 2x/2x + y + 2)
= {[(CSD~" + 1}/2}7

B. Miscellaneous
. POD = 1:CSI = | — FAR
2. FAR=1:CSI =0
3. POD=0:CSI =0
4. FAR = 0: CSI = POD
5. w— o0: TSS — POD
6. The effect of the “k-factor” in Donaldson et al. (1975):
z, = z[k
a. « = 1 (POD and FAR equally important): FAR, = FAR
b. « — 0 (FAR most important): FAR, — 1 (CSI, = 0)
¢. k = o0 (POD most important): FAR, — 0 (CSI, -
POD)

DOSWELL, DAVIES-JONES AND KELLER

over and above random guessing. In effect, we treat
the contingency table like a matrix n with elements 7;;.
The matrix of expected values is denoted E and we
subtract E from n. This gives a new matrix (R) with
elements R; = n; — Ej. It is relatively easy to show
that R is symmetric. Now the sum of the diagonal ele-
ments of the matrix R [i.e., the trace of R, denoted
tr(R)] gives the number of correct forecasts beyond
those attributable to random guessing, but in order to
measure skill, it is desirable to compare tr(R) with
some standard. For the standard, we develop a new
matrix R* which is based on the assumption of perfect
forecasts. This allows us to define the generalized ver-
sion of the TSS as

tr(R)
tr(R*)’

Clearly, if perfect forecasts were issued, the contingency
table would look like that shown in Table 5. In such a
case, the old n matrix is changed to a new matrix n*
which has all zeroes in the off-diagonal elements.
The expected value matrix elements become E};

TSS = (7)

TABLE 4. Schematic k X k contingency table using the notation
in Flueck (1987). The forecast and observed categories are the C; (i
=123 ---k).

Observed
Forecast C C; Cs v Cr Total
C, ny N2 LG} e Ry ny,
G nzy N2 na3 ce ok na,
C3 Ny n3) N33 t N3k ns,
Ce Ry P2 N3 e Ny ng,
Totai (X na ny cee X n,
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TABLE 5. Hypothetical k& X k contingency table for “perfect” fore-
casts, derived from Table 4. Note that the observed totals remain
unchanged.

Observed
Forecast C, C, C, oo Cy Total
C n, 0 0 0 ny=m,
C2 0 na 0 0 Rz = Ry,
C3 0 0 ns3 0 n3 = N3,
Ck 0 0 0 . ' . n.,k ny = Ay,
Total n, ns ns s n n,

= (n})(n%)/n*. Thus, R* = n* — E* and in the 2 X
2 case, the resulting TSS is identical to that shown in
(2) above (see Appendix A).

While the TSS certainly can be extended to the
k X k case, it is not simple and its calculation requires
two passes (one for the actual, and one for the hypo-
thetical perfect forecasts) to find the traces of the R-
matrices. In contrast, the Heidke skill statistic is rather
easily modified for polychotomous forecasts. The
number of correct forecasts (C) is the simple trace of
the original matrix (or contingency table); C = tr(n).
The only significant change is in the calculation of the
expected number of correct forecasts due solely to ran-
dom chance. In the polychotomous case,

k
E=(n)"2 n.n,

i=1

(8)

which, of course, is derived from the marginal totals
in a relatively simple calculation.

So what is the relationship between the TSS and the
Heidke S score? Had we defined the TSS with the K-
matrix remaining the same in finding the R*-matrix
(i.e., R* = a* — E), then we can show (see Appendix
B) that TSS = S! Thus, the only difference between
these two seemingly quite different measures of fore-
casting skill is whether or not one changes the expected
values for the hypothetically perfect forecasts. This is
a rather subtle and not entirely obvious result. We do
not know of any logic that asserts which of these al-
ternatives is most sensible.

2. Regression and a geometric interpretation of the
contingency table

When making dichotomous forecasts and verifying
with dichotomous observations, the resulting 2 X 2
contingency table can be given a geometric interpre-
tation. This begins by assigning numerical scores of
unity to events and zero to non-events. Thus, if 4 and
F denote variables representing actual observations and
forecasts, respectively, then (4, F) = (1, 1), (0, 0), (0,
1), and (1, 0) represent, in order, a correctly forecast
event, a correct forecast of a null event, a false alarm,
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and a missed event. These ordered pairs represent the
elements of the 2 X 2 contingency table. As shown in
Fig. 2, therefore, all the elements of the table are rep-
resented by numbers that are plotted at the four corners
of the figure. The next step is to find the linear regres-
sion of the forecasts upon the actual observations, de-
noted F(A). This is given by (Hays 1973)

F(A) = bp.4(A — My) + MF,

where the slope of the regression line is

9)

Cov(4, F)
bpa=—"75—
S4
_xw-—yz N? 3
N2 (x+p)z+w) 1SS,

in the 2 X 2 case, and where M, and M are the actual
observed and forecast means (respectively), while s,
is the variance of the observed events and Cov(4, F)
" is the covariance between 4 and F. The means are
. given by M, = (x + y)/N and Mr = (x + z)/N; the
covariance by Cov(4, F) = (xw — yz)/N?% and s,
= (x+ y)(z+ w)/N? We also can find the regression
line of 4 upon F, denoted A(F), which satisfies a re-
lation similar to (9), namely

A(F) = by. p(F — My) + My, (10)
where
_ Cov(4, F) xw — yz
bA F= 2 1 s
SF C(x+z)(y+w)
(z) (x}
1— ge——FOH FAR——y
FOM
y
PON
FORECAST POD
@
POFD
FOCN (y)

OBSERVED (A)
1

FIG. 2. Schematic example showing the regression lines of the
forecast upon the observations [F(4)] and the observations upon
the forecasts [4(F)]. The intercepts of these with the 4 = (0, 1) and
F = (0, 1) axes define the quantities listed in Table 2 (see text). The
values M, and M. are the averages of the observations and the fore-
casts, respectively. The elements of the 2 X 2 table (x, y, z, w) are
shown plotted at their associated corners in this figure. See the text
for explanations of TSS and by,. r.
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in the 2 X 2 case, and where s/ is the variance of the
forecasts (572 = (x + z)(¥ + w)/N?). The two regres-
sion lines (9) and (10) are shown on Fig. 2, and it is
relatively straightforward to show that the eight quan-
tities defined in Table 2 satisfy the indicated geometric
relationships, determined by the intercepts of the
regression lines with the 4 and F lines of zero and
unity. It is noteworthy that as w becomes very large,
the intersection point (M4, M) moves toward the or-
igin at (0, 0), which means that the TSS tends toward
the POD, as we already have shown.

Figure 2 provides an elegant picture of the contents
of Table 2, as well as showing that the TSS can be
interpreted as the slope of the regression line|F(4),
br.4 (also noted by Woodcock 1976). Although we
can show various characteristics of b,,r, such As ba.r
= FOH — DFR, we do not know of any sur‘nmary
statistic comparable to the TSS that is as5001ated with
b4.r. If one were usmg probabilities to forecast di-
chotomous events (as in National Weather Service
precipitation probabilities) the data points wo‘uld be
scattered along the 4 = 0 and 4 = 1 axes. In the most
general case with both polychotomous forecasts and
observations, the data would be scattered all over the
figure.

- As a first test of this generalization, Fig. 3 shows the
regressnon lines for the probability forecasts of “wgo/ no

0” days (a dichotomous observation ) that werf. done
at the same time as the dlchotomous forecasts sum-
marized in Table 5 of DF89.% By finding these 1egres-
sion lines, one can use the graphical 1nterpretat‘10n of
such quantities as FAR and POFD (as in Flg 2) to
evaluate the polychotomous forecasts in a way com-
parable to that done in dichotomous forecast ‘venﬁ-
cation. In Fig. 3, for example, the intercept of / with
the 4 = 1 axis (a “POD-like” quantity) is 0.61) while
the intercept of 4 with the F = 1 axis (an “FOH-like”
quantity) is 0.93, giving a value to the “FAR” of 0.07.
Also shown on Fig. 3 are the regression lines derived
from the dichotomous forecast verification (see Table
5 in DF89). The results are similar but not identical

" to the dichotomous forecasts made at the same time,

suggesting an inconsistency between the dichotomous
and polychotomous forecasts. Given the inexperience
with probability forecasting among the DOPLIGHT
’87 forecasters, this inconsistency between “categorical”
and “‘probabilistic” forecasts issued at the same time
is not surprising.

Another test of this idea for generalizing the statlstlcal
evaluation of the dichotomous contingency table to
polychotomous situations can be derived from our own
Tables 6 and 7, to be discussed below in more detail.

6 The probability forecasts were categorized in Tables 8 and 9 of

DF89 and then plotted in the reliability diagram (Fig. 2) of that
paper, although the uncategorized forecasts were used in DF89 to
find the average probability forecast. For the present paper, the un-

categorized probablllty values were used exclusively. !
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FI1G. 3. Regression lines associated with the probability (solid lines)
and the categorical (dashed lines) forecasts, and the “go/no go” days.
Lines labelled Fp(A4) and Ap(F) are the polychotomous forecasts
upon the observations and the observations upon the forecasts, re-
spectively. Similar quantities with “D” subscripts are for the di-
chotomous forecasts. The values of the intercepts are shown for the
regression lines, associated with the POD, POFD, DFR, and FOH
values (see Fig. 2 and Table 2), and the M, and M values are for
the polychotomous forecasts located on the axes. Heavy lines indicate
the POD-, POFD-, DFR-, and FAR-like quantities associated with
the set of polychotomous forecasts and dichotomous observations
(see text for discussion). Note that all the data points fall on the 4
=0and 4 = 1 axes.

Table 6 is polychotomous in both the forecasts and
the observations, although neither is quantitative.
Rather, the forecast and observed quantities describe
the qualitative character of the events (null, nontor-
nadic severe, tornadic). If one assigns a numerical value
of zero to a non-event (either forecast or observed),
what value is given to the other events? In effect, Table
7 assigns each of the event types the same value, namely

TABLE 6. Contingency table for verification of severe thunderstorm
(“blue’”’) and tornado (“red””) watches for 1984. For this verification
the entire country has been covered with grid boxes (roughly 40 km
on a side) and each hour is considered separately. The numbers rep-
resent units of “grid-box hours” and for purposes of reference, the
average watch in 1984 was valid over a space-time period of about
320 grid-box h units. Mulitiple events within a grid-box h do not
affect the totals and watch cancellations have been accounted for, as
have overlapping watches.

Observed
Forecast Red Blue None Total
Red 360 1235 64 043 65638
Blue 38 464 40 181 40 683
None 471 3328 39707 774 39711573
Total 869 5027 39811998 39817 894

TSS = 0.246, S = 0.026

DOSWELL, DAVIES-JONES AND KELLER
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TABLE 7. As in Table 6, except that tornadoes and severe thun-
derstorms have been combined into one category of “severe” events.

Observed
Forecast Severe . None Total
Severe 2097 104 224 106 321
None 3799 39707 774 39711573
Total 5896 39811998 39 817 894

POD = 0.356, FAR = 0.980, CSI = 0.019, TSS = 0.353, S = 0.037

unity, thereby being reduced to a dichotomous situa-
tion. Table 8 shows the effect on the statistics of as-
signing two different values to severe thunderstorm
events, relative to a tornado event, which is assumed
to have a unit value. The effect of reducing the relative
weight on severe thunderstorms vis-a-vis tornadoes is
to increase the POD, FAR, and TSS while reducing
the CSI, due to the large number of severe thunder-
storm versus tornado events, and to the relative un-
importance of the FAR in the TSS when the table is
dominated by correct forecasts of non-events. For non-
quantitative forecasts and observations like this, the
relative weights assigned to the different events con-
stitute a sort of extra ““degree of freedom™ in the sta-
tistical analysis of polychotomous, non-quantitative
event contingency tables. For quantitative, polycho-
tomous forecasts (e.g., probability) and/or observa-
tions, one is not free to make arbitrary weighting as-
signments.

In graphical terms, then, the slope and intercept of
the regression lines are driven by the contents of the
contingency tabie in a basically simple way. For perfect
forecasts (purely diagonal tables) the regression lines
lie along the 45°, F = A line. As forecasts depart from
perfection, the regression lines turn away from this line.
The point (M4, My) represents the center of mass of
the points on the diagram. The geomeiry of the regres-
sion lines is clearly the determining factor for quantities
like the POD and the DFR and, hence, is directly re-
lated the verification statistics. It appears to be useful
to generalize the techniques of Donaldson et al. (1975)
to allow one to compute statistics comparable to those
of the 2 X 2 dichotomous situation in polychotomous
cases.

TABLE 8. Statistics generated from assigning numerical values to
the forecasts of Table 6, as indicated, and using the generalized def-
initions of POD, FAR, etc. for polychotomous situations. The values
assigned are given as ordered arrays (7, ST, N), where T is the value
assigned to tornado events, ST the value assigned to severe thunder-
storm events, and N the value assigned to non-events.

Values POD FAR CSI TSS
(1,1,0) 0.356 0.980 0.019 0.353 (Table 7)
(1,.75,0) 0.426 0.982 0.017 0.423
(1,.5,0) 0.522 0.985 0.014 0.520
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4. Evaluation of DOPLIGHT ’87 results using S

As discussed in DF89, a forecasting experiment
(called DOPLIGHT ’87) was conducted during the
spring of 1987 by the National Severe Storms Labo-
ratory in collaboration with the Norman, Oklahoma
National Weather Service Forecast Office. Interested
readers can consult DF89 for details. Here, our primary
purpose is to present S-values for selected results in
DF89 in order to see if S offers any additional insight.

For the dichotomous forecasts shown in DF89’s Ta-
bles 3, 4, 5, and 7, we have the results shown in Table
9. Although these tables are dominated by the w-ele-
ment, the dominance is not so strong that there is a
great deal of difference between the CSI, TSS, and S
scores. In effect, for these data, the distinctions among
the three different summary. statistics are more or less
negligible. As also shown in Table 9, the data for me-
socyclone forecasting (DF89’s Table 9) suggest that
the CSI, TSS, and S statistics are rather different. It
was pointed out in DF89 that there were too few me-
socyclone events in the data set to put much faith in
the statistics; here, we note that this particular table is
dominated by the w-element to a greater extent than
the others.

Finally, Table 9 shows the computauons for the data
in DF89’s Table 10. These were the so-called convective
mode forecasts which served to illustrate the calcula-
tions for polychotomous forecasts. Note that the TSS
and S statistics are nearly identical. Again, there is one
dominant element in the table, but its dominance is
not exceedingly great.

Although there appear to be some minor differences
between the TSS and S statistics for the DOPLIGHT
87 data, these do not seem to be very important. This
result confirms our abstract analysis that suggests little
difference between the two when the contingency table
is not characterized by overwhelming dominance of
the w-element in the table.

5. Comparison of TSS and S in rare event forecasting

In order to give the Heidke skill score a real test
against the TSS, we need a data set which truly is over-
whelmed by correct forecasts of null events. We cur-
rently are working on such a data set, which will be
" the subject of a forthcoming paper (a preliminary ver-
sion of which is given in Doswell et al. 1990). Here,
we will give a sample of the sort of data we will be
evaluating to show the value of the S statistic relative

to the TSS and CSI.

The forecasts being verified are severe thunderstorm
and tornado watches issued by the Severe Local Storms
forecasting unit of the National Severe Storms Forecast
Center (NSSFC). We have used a grid to break the
contiguous 48 states into small grid boxes and have
used the NSSFC verification data sets to determine the
. number of hours each grid box is under a tornado or
severe thunderstorm watch. The validating data of se-
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TABLE 9. Additional calculations from DOPLIGHT ’87 data pre-
sented in DF89. See the indicated tables in DF89 for the raw con-
tingency tables and the other summary statistics.

Heidke

Forecast Expected Observed skill DF89

product # correct # correct score TSS table #
Advance

outlook 55.6 79 .66 63 3
Moming .

update 54.7 75 .56 .55 4
Noon outlook 54.7 79 67 65 5
SELS day one 53.0 77 .63 65 ! 7
Mesocyclones 76.2 83 49 61 9
Convective ‘

mode 24.4 47 .35 10

36 |

vere thunderstorm and tornado reports (also su bplied
by NSSFC) are then used to construct contingericy ta-
bles for each grid box. Results for the year of 1984, for
all the boxes in the 48 contiguous states are shown in
Tables 6 and 7, where Table 6 is for the 3 X 3 vizrsion
of the contingency table while Table 7 is the condinsed,
2 X 2 form.
These tables quite clearly are dominated by the cor-
rect forecasts of non-events. It may be seen that the
TSS and S scores differ substantially (by about anl order
of magnitude) in both tables. It is also obviods that
when watches are verified in this fashion, Oneh finds
that a significant fraction of the watch area is not af-
fected by any severe weather, giving a distinct i 1n1pres—
sion of overforecasting. This articleis not the plalce for
a detailed treatment of this subject, but we should ob-
serve that one expects not to see every part of a devere
thunderstorm or tornado watch contain an eve';nt for
the entire duration of the watch. This expectat!:lon is
due, at least in part, to the difference between [point
and area forecasts, the watch being one of the |atter.
Apart from this question of how to interpret [these
numbers, we should point out that these figurés are
preliminary in character, and are subject to slight
changes by the time the project is finished. They do
serve to illustrate our point about the TSS and S sta-
tistics, however. :
Table 7 shows that the S-score indeed is higher, than
the CSI, as it should be if correct forecasts of null e;vents
are accounted for in the scoring. If we note thatithere
are about 30 times as many false alarms (the z-ele'ment
in Table 8) as there are detection failures (the -ele-
ment) then we can re-calculate the CSI using a
factor” of 30 (which means that the resulting table has
its z-value roughly equal to its y-value). In such a\'case
we find that CSI, = 0.224, Similarly, one can r1’=-cal-
culate the Heidke skill score to find S, = 0.366, .agam -
revealing credit given for correctly forecasting jnon-
events. The TSS also can be re-computed as |TSS,
= 0.356, which represents only a very small change
and the TSS, has become virtually identical to the POD.
Also, the TSS, and S, are nearly equal, which is the
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result of the use of the «-factor to make z very nearly
the same as y.

6. Summary and discussion

It is evident from what we have shown that the TSS
has a problem in dealing with cases involving forecasts
of rare events. We have shown that the TSS becomes
close to the POD when correct forecasts of nothing
happening dominate the forecast contingency table.
Therefore, the TSS is neither “strictly proper” nor
“proper,” because a forecaster can maximize the score
by overforecasting in those situations where there is
even a remote chance of the event occurring (provided
that the condition w > z remains valid). This approach
only works if there is a great preponderance of situa-
tions where there is virtually no chance of the event
(i.e., rare events). Thus, use of this skill score encour-
ages rare event forecast “hedging” of the sort described
by Murphy and Epstein (1967)—i.e., deviating from
the forecaster’s true beliefs in order to increase the ver-
ification score. We. conclude that the TSS is an im-
proper scoring rule for rare event forecasting.

We have offered the Heidke skill score (S) as a sta-
tistic which avoids this problem and still retains most
of the desirable features of the TSS noted in Flueck
(1987) and DF89. It incorporates information from
the w-element of the 2 X 2 contingency table in a con-
trolled way, such that credit is given for correct forecasts
of non-events, but the effect of false alarms is consid-
ered, even in the limiting case where the ratio of false
alarms to correct null forecasts goes to zero. Moreover,
S is easier to calculate than the TSS, especially in tables
of higher order than the 2 X 2 case. Since S = CSI
throughout its range, this implies that the S-score is,
in effect, giving credit for correct null forecasts (i.c.,
the contents of the w-element in the contingency table)
but in a reasonably controlled way, unlike the TSS. Its
advantage over the CSI itself is that the w-element is
being factored into the summary measure of skill.

We have shown how the TSS and S are related. The
key element in this derivation is the equality of the
marginal sums »; and n; (for i = 1, 2) in the perfect
forecast matrix n*, used in showing (A3) of Appendix
A. This has the effect of changing the expected value
matrix in the case of perfect forecasts to account for
the change in those marginal sums resulting from dif-
ferent forecasts than in the actual matrix. The bogus
situation in which the expected value matrix remains
the same gives the unexpected result that TSS = S. We
observe that the perfect forecast table is an implicit
part of the Heidke skill score, because N can be inter-
preted as the number of correct forecasts when the
forecasts are perfect. S is also equal to the ratio of the
traces of R-matrices (i.€., a form of the TSS) when the
E-matrix is held fixed.

We also have shown that several aspects of the ver-
ification associated with a contingency table have a
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geometric interpretation. This has allowed us to com-
pare dichotomous and polychotomous forecast veri-
fication scores directly, simply by looking at the inter-
cepts of the regression lines with the forecast and actual
observed coordinate axes. Thus, we have generalized
the notions of Donaldson et al. (1975) to both partially
and fully polychotomous situations, including those
where the polychotomous categories are not quanti-
tative. Because we have shown that the dichotomous
techniques can be applied to polychotomous situations,
this underscores further the point made in DF89 that
the distinction between dichotomous (i.e., “categori-
cal”) and polychotomous (e.g., “probabilistic”) situ-
ations is illusory.

We have illustrated differences among the three
summary measures, TSS, CSI, and S, in forecast sit-
uations where the contingency table is not overwhelm-
ingly dominated by correct null forecasts, and in a case
where the table is so dominated. It is clear that the
Heidke skill score offers the distinct advantages of being
usable in both situations and incorporating information
about correct null forecasts in a controlled way.

Use of the TSS in rare event forecasting is compa-
rable to letting « become very large in the Donaldson
et al. modification of the CSI, because in both cases
the summary statistic tends toward the POD. In fact,
we have shown (e.g., Table 8) the TSS, CSI, and S
scores to be nearly equal when a x-factor is employed
to reduce the impact of false alarms by making the y-
element and the z-element in the contingency table of
similar size.

Much of this paper has been concerned with the
relative merits of the Heidke S score vs. the TSS. We
believe, at least in cases involving rare event forecasting,
the Heidke score is superior to the TSS. However, we
observe that both the TSS and S scores are unchanged
if we interchange the diagonal elements, since the trace
remains the same. If we consider interchanging the di-
agonal elements in Table 8, for example, we would
have a quite different picture of forecasting success but
the S score would not be changed. The CSI, in contrast,
would be significantly different. Clearly, no single
measure of forecasting success can give a complete pic-
ture and it is desirable to include, in addition to S, the
CSI, POD, and FAR (at least) in any summary of fore-
casting verification (as in, for example, Goldsmith
1989). While it borders on being trite to draw this con-
clusion, its very triteness suggests that many verification
efforts put too much emphasis on a single score to de-
scribe all of the information contained in a contingency
table.

Acknowledgments. We would like to thank Mr.
Ding Jincai (visiting NSSL from the Shanghai Mete-
orological Center) for several helpful discussions on
this topic, as well as the staff members of the National
Severe Storms Forecast Center for supplying us with



584 WEATHER AND

the data used in section 5 of this paper. The constructive
criticisms of the anonymous reviewers were of consid-
erable value in improving the presentation. Ms. Joan
Kimpel’s skillful drafting of the figures is also appre-
ciated.

APPENDIX A
Derivation of the TSS from the
Generalized Definition

We begin with the generalized definition of the TSS
as the ratio of traces of R-matrices shown in (7). In
the case of the numerator, we use the notation shown
in Table 4 to find (in the 2 X 2 case) that

tr(R) — [nl _ (nl.)(n.l)] + [}122 _ (n2_)(n.2)]
n. n,
= kn..)_l[(n..nll —n.ny)+ (n_nyp— nyny)l,
(A1)
while
tr(R*) = (n.1 _ M(”_l)) + (n.z 3 (nz.)(n.z))
n, - n,

= (n)7'[(n.ny—nny) + (n.ny = nyny)].
(A2)
Usmg (Al)and (A2)in(7)and makrng use of the fact
that in the case of perfect forecasts, n,. = n, and n,,
= n,, it can be seen that
[n.(ni + ny) — (mny + mnz)l/n,
[n.(ny +ny)— (nd +n3)l/n,

(A3)

Expanding the numerator and denominator, noting
that n; + n, = n_and that n% + n% = (n, + n,)?
— 2n,4n,, (A3) becomes

C[2(nymy — niany)l/n.,
2(n.nz)/n,

TSS =

TSS =

_ Rulpy — nphy

(A4)
nn;
From (A4) ‘it is easy to conﬁrm that
TsS =22 — 22— pOD — POFD,  (AS)
n, ’1 2

using the notation from Table 4 and the definitions in
Table 2. This confirms that (2) can be derived from
the more general TSS definition (7).

APPENDIX B

Derivation of the Relation Between the TSS
and -Heidke S Scores
In order to show things a bit more clearly, we will
revert to the original notation for the 2 X 2 contingency
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table (Table 1). As before, we begin with the most
general definition of the TSS as the ratio of tr(R) to
tr(R*). In thrs case, £\, = (N)"'[(x + z)(x + y)] and
Eyn=(N)"'[(z+ w)(y + w)]. Therefore,

(x+z)(x+y)_ 1

Ry =x— N —N(xw—yz) “
(z+w)(y+w)
-——~ =R B
N 22 ; ( 1)
If we consider the perfect forecast contingencyj table,

but do not allow the expected values to change [see
(4)}], then ‘

(x+z)(x+y) |

Rii=(x+y)— ~ |
1 3 .
=N(X+y)(y+ w), 1 (B2)
RE = (24 w)— (z+w)y+w) |
N |
=y aE+w). 1(133)
From (B2) and-(B3) it is straightforward to sho W

tr(R*) = (M) '[y? + z2 4+ 2xw
+ (x + w)(y + 2],
so that from (B1-4) and (7), we have

(2/N)[xw — yz] ‘
(1/N)[y* + 22 +2xw+(x+w)(y+:

=5, (BS)

|
the latter equality following from (3), above.| This
demonstrates that in the case where the expected|value
matrix does not change, the TSS and S scores are ex-
actly the same (at least for a 2 X 2 table). ‘
In order to treat the general k X k case, we observe

that C = tr(n) and E = tr(E). Therefore

|
_ tr(n) — tr(E) tr(n) — tr(E)|_
N—tr(E) ’ tr(n*) — tr(E*)
which means, since tr(n*) = N, that S = TSS whe' ‘neve_r
E* is replaced with E, even in the general k X /qcase.

TSS =

TSS =
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